Arxiu de la categoria: fisica

XXX Conferència Catalana per un Futur sense Nuclears i Energèticament Sostenible

Amb motiu del 30 aniversari del desastre de Txernobyl El grup de Cientifics i Tècnics per un futur no Nuclear de Barcelona va convidar a Valentina Smolnikova per repassar la situació actual de la zona afectada. Amb el titol “30 anys vivint a txernòbil” tingué lloc al museu marítim de Barcelona amb la traducció d’ Elena petrova

el triptic sencer 30ccfsn triptic  i el video de la xerrada

 

Clark R. Chapman. Astrofisic: Caiguda de Meteorits

Tengo 57 años: en astrofísica los años son una minucia. Nací en Palo Alto y mi padre en Sevilla: mi abuelo era hispanista. Estudié en Harvard y el MIT. Fui miembro del equipo que envió una nave al asteroide Eros y he participado en las misiones Galileo y Mercurio. Ahora controlo el riesgo de que algún meteoroide impacte en la Tierra

– En España hace unos años caían trozos de hielo del cielo.

– Porque los aviones vaciaban sus váteres en pleno vuelo.

– ¿Existe algún otro riesgo de que el cielo caiga sobre nuestras cabezas?

– Ínfimo de que suceda durante su vida; pero no es improbable que un meteorito acabe con la especie humana, del mismo modo que otros meteoritos acabaron con otras especies en la historia de la vida sobre la Tierra.

– ¿Cuándo?

– Hace 65 millones de años cayó un meteorito que liquidó a los dinosaurios y al 70 por ciento de todas las especies.

– ¿Podría volver a pasar?

– La gente tiene demasiado miedo de todo: terrorismo, virus malignos, bombas atómicas… No quiero darles otro motivo.

– ¿Un meteoroide como el que acabó con los dinosaurios podría ser hoy detectado?

– Lo sería muy probablemente.

– ¿Y nos pondríamos de acuerdo entre todos los humanos para desviarlo?

– Es uno de los objetivos de mi trabajo en el Southwest Research Institute: un plan de emergencia para la especie ante la caída de un meteorito. Gastamos dinero en cosas menos necesarias, pero añadiré que afrontamos otros riesgos más inminentes y evidentes.

– ¿Tenemos medios hoy para desviar un meteoroide que se nos aproxime?

– No está claro. Tal vez uno pequeño como Apofis podríamos destruirlo…

– ¿Apofis nos amenaza?

– Fue descubierto en junio del 2004 y sí, hay muchas probabilidades de que choque con la Tierra en el 2036. Ojalá entonces tengamos tecnología para poder desviarlo.

– ¿Usted nos lo tiene controlado?

– El 13 de abril del 2029, Apofis pasará a 36.350 kilómetros de la Tierra, tan cerca que cruzará el anillo de satélites geosincrónicos en órbita y será visible para cualquiera como un punto móvil parecido a una estrella.

– ¿Es muy gordo Apofis?

– Mide 300 metros de diámetro, pero tiene un poder de impacto cuatro veces el de la erupción del Krakatoa. Pasará por una ventana imaginaria que hemos calculado y que tendrá el tamaño de un edificio de 15 plantas.

– ¿Y luego?

– Volverá al espacio y orbitará alrededor del Sol para volver a entrar por esa misma ventana calculada y tal vez impactar con la Tierra el 13 de abril del 2036.

– ¿De qué depende?

– De si realmente atraviesa ese agujero en el espacio que hemos calculado: si lo hace con precisión en el 2029, impactará contra nosotros en el 2036. Si, por el contrario, se desvía, cuando vuelva a atravesar ese agujero teórico siete años después, la Tierra ya no estará allí y no impactará en ella.

– A ver si estamos para verlo.

– Ahora bien, si nos cae un meteorito como el que acabó con los dinosaurios, que causó un cráter de 10 kilómetros de diámetro, entonces no hay tecnología que lo detenga.

– ¿Guerra de las galaxias? ¿Misiles?

– No servirían. Aunque no fuera un meteorito muy grande, sólo con 10 kilómetros de diámetro, en comparación con la Tierra, impactaría a 30 kilómetros por segundo y la explosión liberaría cien millones de megatones.

– Al menos no sufriríamos.

– No nos enteraríamos.

– ¿Hay muchos Apofis acercándose?

– Existen alrededor de 1.100 asteroides mayores de un kilómetro de diámetro que se nos acercan. Hemos localizado y visualizado un 75% de ellos y hemos estudiado su trayectoria: que sepamos, ninguno va a impactar en la Tierra en los próximos cien años.

– Yo ya creía que me libraba de la hipoteca.

– Espere: aún nos queda un 25 por ciento de meteoroides por detectar y controlar, y tampoco sabemos qué pasará después…

– Ya se apañarán: seguro que espabilan.

– Y luego está el grupito que tal vez impacte contra nosotros, como Apofis, que volverá a tener otra oportunidad en el año 45.000.

– Ese Apofis es un pesado.

– No es el más pesado. Está Eros, que también se nos acerca y tiene 20 kilómetros de diámetro: es enorme, mucho mayor que el que acabó con los dinosaurios.

– Parece que sabe mucho de él.

– Hace ocho años trabajé para la NASA porque enviamos una nave que orbitó alrededor de Eros durante un año y al final se posó sobre su superficie: erotizó. Lo hicimos erotizar (como aterrizar pero en Eros), porque hubo una avería en los instrumentos y tratamos de que funcionara sobre suelo erótico.

– ¿Y qué pasó con la nave erótica?

– Todavía está allí. Hizo su trabajo. Tenemos excelentes fotografías.

– ¿De qué están hechos los meteoritos?

– ¿Ve este anillo?

– ¿Está hecho de metal de meteorito?

– Sí. Un día me olvidé de quitármelo durante un análisis clínico y los aparatos se volvieron locos. Concentra la energía del universo: este metal proviene de un asteroide totalmente metálico de níquel y aloide.

– Y los demás meteoritos, ¿de qué son?

– Nada exótico. El universo está compuesto de los mismos elementos que la Tierra, pero en cada asteroide se encuentran en distintas proporciones. No espere encontrar criptonita ni nada por el estilo.

– ¿Usted ha acertado alguna vez dónde iba a caer un meteorito?

– La respuesta es que no, pero cada vez tenemos telescopios más potentes y en los próximos años podremos visualizar cien veces más asteroides que ahora. Piense que no teníamos ni idea de casi todo lo que le estoy diciendo cuando yo empecé a estudiar. Y no soy tan viejo.

Publicat a la Vanguardia 11-08-2007

Lawrence Krauss. Aquest Univers és insensat

Lawrence Krauss. Tengo 53 años. Nací en Nueva York, crecí en Canadá y vivo en Ohio. Soy doctor en Física por el Massachusetts Institut of Technology, cosmólogo y astrónomo. Tengo una hija de 23 años. ¿Política? Soy un liberal racionalista y uso el método científico. ¿Dios? No uso ese concepto

¿Qué pasó hace 14.000 millones de años?
Fue hace 13.700 millones de años: comenzó el universo conocido.
Esto que tenemos. ¿De qué está hecho?
De nada.

¿Eh?
Un 70% es energía oscura. Otro 29% es materia oscura. Y el 1% restante son las estrellas, los cometas, los planetas, nosotros…

¿Lo que veo es sólo un 1% del universo?
Sí. ¡En qué consiste ese vacío del 99% es el gran enigma que investiga la ciencia!

Llámenle Gran Vacío o Dios, y fuera.
Un científico investiga. O es otra cosa.

Si mantuviese una charla con el Papa, ¿qué le preguntaría?
“Siendo usted un hombre culto, racional e inteligente, ¿cómo consigue encajar sus conocimientos en sus dogmas?”.

¿Intentaría convencerle de algo?
Me ofrecí, en una carta abierta, a explicarle todo lo que quisiera saber del universo.

¿Y qué es lo último que ha sabido?
Lo mucho que pesa el vacío, lleno de energía oscura. Que, en vez de atraer, repele.

¿Qué quiere decir?
Que acelera la expansión del universo.

¿Por dónde y hasta cuándo?
Se expande por todas partes y por siempre.

¿No se ralentizará la expansión?
Un universo sensato se detendría, pero…

¿Vivimos en un universo insensato?
¡Absolutamente insensato!

Si sigue así, ¿desaparecerá todo?
Pues sí, parece que todo seguirá separándose… hasta quedar un vacío negro y frío.

Y antes del big bang, ¿qué hubo?
El tiempo, como las tres dimensiones del espacio, comienza en el big bang.Pero busco trazas de extrauniversos: puede haber más dimensiones de las observables, un número infinito de universos plegados entre estas cuatro dimensiones, aún inobservables…

Suena a ciencia ficción.
La ficción se esfuerza…, pero la ciencia siempre se las apaña para ser más interesante que la ficción. La ciencia supera a Star Trek.

¿En qué, por ejemplo?
Hoy hablamos con computadores, hay máquinas que leen el estado de salud de nuestros órganos internos, nos comunicamos por teléfonos móviles… ¡Son cosas que antes hacían sólo los amigos del doctor Spock!

Ha resultado ser una serie realista.
No en una cosa: disponen de un cuartito para recrear holográficamente la realidad que deseen, ¡y no veo que lo usen para el sexo!

¿Qué experimento científico le gustaría realizar pero aún resulta inviable?

Tomar una nave espacial y darme una buena vuelta por las galaxias. O construir cerca de casa un acelerador de partículas, un gran colisionador de hadrones como el que hay ahora entre Francia y Suiza bajo tierra.

¿Para qué sirve eso?

Para analizar la naturaleza de la materia en su menor escala posible y asistir así a las fuerzas básicas del universo: ¡para recrear las condiciones iniciales del big bang!

¿Qué es lo último que hemos averiguado del big bang?

Estamos sabiendo qué pasó en el primer segundo, pero el trabajo consiste en intentar descubrir qué pasó en la primera milmillonésima de segundo. No lo sabemos todavía.

¿Por qué le interesa saberlo?

Bueno, es por saber de dónde venimos.

La siguiente pregunta que deberá formular será por qué hubo big bang.

Por ahora me interesa más discernir si coexisten muchos big bang,quizá infinitos, un multiverso…

Si me dice que el universo está hecho de nada, ¿de qué estoy hecho yo?

De átomos salidos de una estrella. Su ojo derecho puede incluir átomos salidos de una estrella distinta de los del ojo izquierdo.

Al final, salidos todos del big bang.

También puedo decir que está usted hecho de vacío: las distancias entre cada partícula de un mismo átomo son tan enormes a su escala…, que bien puedo decir que son espacios de vacío. ¡La materia es vacío!

¿Alcanzaremos una bella ecuación que sintetice todas las fuerzas del universo?
¿Para imprimirla y lucirla en una camiseta, quiere decir? Pues quizá será una camiseta en once dimensiones…

¡Me pido una!

Reservada. Pero no espere que se la sirva enseguida, eh…

¿Cómo se metió usted en este oficio?

De niño me gustaba leer libros de ciencia… y quise ser científico. Hoy escribo libros de divulgación científica para devolver algo de lo que recibí.

Y contagiar el gusto por la ciencia.

Es una pasión que comparto con amigos como Stephen Hawking.

¿Son muy amigos?

Sí. Hace poco organicé una estancia en una lujosa villa en una isla caribeña con un grupo de científicos, entre ellos Stephen Hawking, financiados por un millonario norteamericano. Stephen nunca había estado bajo el agua, y yo le organicé la experiencia.

¿Cómo lo hizo?

Alquilamos un submarino pequeño, para los treinta científicos. Yo, afuera, iba buceando delante, guiándoles por aquellos fondos bellísimos. ¡Cómo disfrutó Stephen Hawking…! Lo próximo será embutirle en un traje de buceo y bucear juntos.

Será como flotar juntos por el cosmos.
A falta de nave espacial, buceo.
‘Trekkie’

Tiene la sonrisa fácil y es de los que cierran los ojos ante algunas preguntas, para ver mejor. De hecho, su trabajo consiste en hacer preguntas al cosmos y buscar respuestas con el raciocinio más que con la vista. Para conocer sus investigaciones le ha convocado el CCCB, donde me explican que Krauss está considerado uno de los cinco mejores físicos de mundo, junto con Hawking, del que me enseña unas fotos compartiendo acuáticos ocios en el Caribe. Es uno de los científicos más populares de Estados Unidos y autor de La física en ´Star Trek´- es un trekkie,un fan de la famosa serie- y de la galardonada Historia de un átomo: una odisea desde el ´big bang´ hasta la vida en la Tierra.

Publicat a La Vanguardia el 26-06-2008

en Vasily Nesterenko ha mort

25 agost 2008
mail from @belrad..
Subject: Urgent Bad News

Dear my friends and our partners!
I have the most bad news during last time!
Today morning I had known that the Professor Vasilij Nesterenko has died.
I dont know if his family informed you. Tomorrow I will say him last hello and could take your kind words too.
We all grieve about him!!!
I suppose that we all could join efforts and continue our common good intention!
We are together.

Fragmento de Reportaje publicado en el suplemento de Historia del periódico Heraldo de Aragón el 18 de octubre de 2007.

Anna Zorina dice: “Cuando ocurrió el accidente de Chernóbil, trajeron a casa unas cartulinas con indicadores. Antes de comer nada, tenías que hacer la prueba. Si el indicador se ponía verde, no había problema. Pero si se ponía rojo, tenía radiactividad y había que tirarlo”. ¿Adónde se tira una manzana radiactiva? ¿Al cubo de la basura? Anna Zorina no lo sabe, era muy pequeña entonces. Vive en Minsk, la capital de Bielorrusia, y es amiga del escritor Alexander Kaletski. Hace unas semanas vino a España con su hermana Olga. Acompañaban a un grupo de niños contaminados de los alrededores de la central de Chernóbil.

“Una de las familias receptoras tenía asignada una niña de 12 años”, cuenta Olga Zorina. “Le habían comprado ropa de la que pensaron que sería su talla natural. Pero cuando se la probaron vieron que era demasiado grande. Así que volvieron a la tienda: la ropa que de verdad le valía era para niñas de 8 años. En dos meses de sol, mar, comida limpia y entorno saludable ha ganado tallas y ya se pone la ropa que le compraron al principio. La de una niña normal de 12 años.” Olga Zorina añade: “En Francia los acogen tres semanas y la radiación interna les baja un 25%. Pero en España, que es el país que más niños acoge, junto con Japón, y donde suelen estar dos meses, la radiación de los niños disminuye un 62%”. Durante el invierno la niña no se enfriará. Y se lo agradecerá por carta a la familia que la acogió un verano. Les mandará fotos de sus padres, en su casa de campo. Con su gato. Al final, les escribirá: “Aquí, en Mozyr, en Braguine, en Zhlobin, en Viatka, en Svetlogorsk, en Motnevichi, en Nisimkovichi o en Dubovy Log, que es el pueblo oficialmente más contaminado de Bielorrusia, todos quieren conoceros. Sois nuestros amigos. Podemos vernos en Minsk, así no tenéis que venir hasta estos campos podridos. Mis padres quieren daros las gracias. Quieren abrazaros”.

Al profesor Vasili Nesterenko lo llamaron a Chenóbil el 29 de abril de 1986, tres días después de que se produjera el accidente. Era el jefe de un proyecto militar soviético de naturaleza nuclear. El académico Valeri Legassov, que fue quien dio la versión oficial del accidente en Viena, cuatro meses más tarde, no sabía cómo apagar el incendio y los isótopos se escapaban al aire, formando una nube radiactiva que acabó recorriendo el planeta. “Profesor Nesterenko, necesitamos su ayuda”, le dijo Legassov. “Lo recogerán en un helicóptero, en tres horas y media estará con nosotros.” Y es que en el gorkom de Pripiat, la sede del partido, donde se instaló el gabinete de crisis, acababan de hacer un hallazgo espeluznante. Según los cálculos de los físicos, había entre un 5 y un 10% de probabilidades de que alrededor del 10 de mayo se produjera una explosión nuclear. Así lo declaró Vasili Nesterenko en el Centro Georges Pompidou de París.

“Toda Europa se hubiera convertido en territorio inhabitable.” La explosión hubiera sido equivalente a 40 bombas atómicas como las de Hiroshima y Nagasaki juntas. Nesterenko evitó que eso ocurriera. Después dejó el ejército, el proyecto Pamir y todo lo demás. Desde hace dos años, la joven Olga Zorina es la asesora jurídica del BELRAD, instituto independiente para la protección radiológica que dirige el profesor Nesterenko. Y trabajan juntos, en despachos contiguos. Olga Zorina dice: “La misión de BELRAD, de Minsk, es informar a la gente de lo que puede comer, de cómo debe cocinar los alimentos, de cómo vivir con la radiactividad. Enseñamos a los maestros a que propaguen hábitos saludables. Las hortalizas deben ponerse en agua con sal durante un día. No deben comer setas. Les decimos de dónde pueden beber agua. Medimos las radiaciones humanas con un espectómetros y les damos Vitapect, un complejo vitamínico a base de la pectina de la manzana. Eso es lo que hacemos, prevención y trabajo científico”. Olga Zorina insiste: “Científico”. Los resultados, en este ejemplo: durante diciembre de 2005 y enero de 2006, se tomaron mediciones a 51 niños y 15 adultos en la ciudad de Belyayevka y se observó que con la pectina la radiactividad interna se redujo un 26,4%. Y así en cada pueblo al que van. Que son muchos. Los informes trimestrales del BELRAD son concluyentes y demuestran que la pectina es eficaz. Pero las autoridades no quieren reconocer el problema, porque entonces tienen que ocuparse de solucionarlo. “Vuelvan, vuelvan a sus casas”, decían, “todo está limpio, no hagan caso a Nesterenko, que solo quiere asustarlos.”

“No pasa nada”

Y algunos vuelven. Se preguntan por qué iban a engañarles. “No pasa nada”, les decían aquellos días de abril de 1986 a los habitantes de Pripiat, la ciudad donde vivían los empleados, cuando veían salir humo de la central. El cielo estaba lleno de helicópteros, los militares andaban con máscaras por las calles. “No pasa nada, sigan con sus asuntos, disfruten de la primavera”. Y luego tardaron tres días en evacuarlos, durante los que la población estuvo respirando cantidades ingentes de partículas radiactivas. Ocurrió un fin de semana de finales de abril, hacía buen tiempo, la gente celebraba meriendas en el campo. “¿Por qué iban a engañarnos?”

A los que vuelven les llaman “Samosiol”, una palabra que nombra a aquellos que no tienen a dónde ir. Olga Zorina dice que también significa “eres burro”. Algo así como una frase hecha: no tienes nada. No tienes tierras. No tienes casa. No tienes quien te cuide. Solo tienes radiactividad. Dicen que, en según qué condiciones de luz, se puede ver un reflejo de color violeta sobre la hierba. Que a las ancianas se les llena el pecho de leche. Que desaparecen las abejas. Que a las gallinas se les pone la cresta negra de la raciación. Pero aun así vuelven.

Biocombustibles: la segona generació

Els biocombustibles tradicionals, com l’oli de colza i l’etanol, són ecològicament problemàtics i amenacen les fonts d’aliments. Ara una empresa d’Alemanya en té la solució: un combustible avançat, fet de fusta i unes altres biomasses no alimentàries.

Les instal·lacions de l’empresa són bastant petites. I, fins i tot si el negoci rutllava bé, la producció continuaria essent prou modesta –només 13.500 tones mètriques de combustible dièsel cada any, comparades amb el consum anual d’Alemanya, que és de 30 milions de tones. Així i tot, aquesta petita refineria al poble de Freiberg, a l’antiga Alemanya oriental, ha aconseguit d’atraure un considerable nombre de visitants preeminents, incloent-hi els presidents i els principals investigadors de Mercedes Benz i Volkswagen.

I no seran els únics que assistiran a la inauguració solemne de les instal·lacions dijous vinent: també hi haurà els principals gestors de Shell, a més de la cancellera Angela Merkel. Fet i fet, el petit complex de sitges de ciment, cambres de combustió i catalitzadors propietat de Choren Industries s’ha convertit en un lloc de pelegrinatge obligat. L’única en el seu gènere al món, la instal·lació és dissenyada per transformar fusta en combustible per a automòbils –i representa, per tant, un pas decisiu cap als anomenats biocombustibles de segona generació.

Durant les darreres setmanes, el suport als biocombustibles convencionals, com ara l’oli de colza i l’etanol, ha minvat dràsticament, per què molts dubten si realment signifiquen cap avantatge. Promoure aquests biocombustibles de primera generació amb incentius fiscals i mescles obligatòries ha demostrat ser un enfocament erroni. Ara, el nyap era perfectament predecible.

Esmenar els errors de la primera generació. Els nivells de producció dels combustibles obtinguts a partir de cereals i tubercles són simplement massa baixos. Els avantatges ambientals han estat limitats, i potser fins i tot aquests biocombustibles farien més mal que bé. A més, el biocombustible no escau gens bé a molts motors. Tot això se sabia, i en gran mesura s’ha ignorat, durant anys.

Choren Industries ara vol marcar l’alba d’una nova era. La planta a Freiberg usa biomassa no alimentària, en comptes de conreus tradicionals, i és la primera d’aquesta mena que travessa el llindar entre la recerca teòrica i la producció industrial. Aquesta refineria avançada fou dissenyada per a obtenir proves que els nous combustibles són factibles –i poden ser produïts a escala molt més gran.

Així, en comptes de remolatxes sucreres i colza, la nova planta processa fusta com a matèria primera. Si no hi ha més remei, també pot usar palla. L’ús d’aquests materials millora significativament el rendiment de les àrees cultivades. Segons estimacions facilitades per l’Agència de Recursos Renovables (FNR) de la República Federal d’Alemanya, els resultats anuals de l’energia obtinguda usant el procés Choren, basat en un clima centreeuropeu, són 4.000 litres de combustible per hectàrea; per tant, el triple que amb els anteriors mètodes de producció de biocombustible. A més, en comparació amb els mètodes de producció de l’oli de colza i de l’etanol, aquesta tècnica no produeix uns combustibles de qualitat inferior. Choren produeix un dièsel extremadament pur, pràcticament sense sulfurs. Ultra això, la segona generació de biocombustibles no danya els filtres de partícules ni els motors, i assoleix nivells d’emissions ínfims.

Aquesta tecnologia pionera és, de fet, un miracle descobert gràcies a la investigació a l’antiga Alemanya Oriental. Després de la Segona Guerra Mundial, l’estat socialista finançava l’Institut del Combustible a la localitat minera de Freiberg. Mogut per les preocupacions que un dia el nou país pogués trobar-se privat de petroli, els químics i enginyers van treballar per fer avançar la tecnologia de conversió del carbó desenvolupada a l’Alemanya nazi. Al capdavall, la RDA no mancava pas precisament de lignit –també conegut per carbó marró.

El carbó no és res més que biomassa fossilitzada –un combustible de base vegetal. La idea no va trigar gaire a fer el salt dels laboratoris del paradís dels treballadors emmurallat a una empresa de nova planta a l’Alemanya unificada i de lliure mercat.

Amics als llocs adequats. Bodo Wolf va anar progressant en l’escalafó –de miner a enginyer– fins a esdevenir un dels principals investigadors de l’Institut del Combustible. El 1990, tan sols un any després de la caiguda del mur, ell i un grup de col·legues van fundar l’empresa que eventualment esdevingué Choren. Wolf hi va desenvolupar una tècnica basada en els elements clau del procés de liqüefacció per a transformar fusta en un gas de síntesi que, al seu torn, podia ser transformat en combustible líquid

.

Després vingué una dècada de dur treball de recerca, acompanyat d’una consciència creixent que els recursos limitats d’un grup de científics mai no serien suficients per a dur endavant un projecte tan ambiciós. El 2000, l’empresa de Wolf es trobava a la vora de la fallida quan va poder convèncer Hanns Arnt Vogels, antic president de l’empresa aerospacial alemanya MBB, que tenia una idea brillant.

Aleshores, les portes van començar a obrir-se. Grans portes. Vogels tenia connexions amb el món del poder i els diners. Aviat Wolf suggeria el concepte a Volkswagen i a Mercedes, que s’hi van embarcar ràpidament com a socis de desenvolupament. En el front inversor, Vogels va reclutar una munió d’antics capitans de la indústria, respectables i solvents, incloent-hi antics presidents de bancs i el distingit magnat de l’energia verda Michael Saalfeld.

D’aleshores ençà s’han injectat 180 milions d’euros a l’empresa Choren, segons Tom Blades, que ha dirigit l’empresa els darrers quatre anys. L’astut britànic, que abans treballava per a Schlumberger, el gegant perforador de pous de petroli, va resultar ser l’home idoni per a una de les principals missions diplomàtiques de l’empresa: calia pujar a bord una petroliera, si era possible, líder en tecnologia verda.

Blades va trigar-hi una mica més d’un any. L’estiu del 2005, Shell va adquirir una porció de l’empresa. L’empresa petroliera hi va aportar un component clau en el procés de refinament, la tecnologia Fischer-Tropsch, capaç de transformar el gas de síntesi en un combustible BTL [biomass to liquid, ‘biomassa a líquid’].

Els investigadors del conglomerat petrolier semblen estar-ne completament convençuts: “El BTL és un combustible de somni –afirma Wolfgang Warnecke, president de Shell Global Solutions a Hamburg–, el millor de tots els biocombustibles.”

Cap a final d’any, la planta de Freiberg serà operativa, alimentada sobretot amb trossos de llenya vella sense tractar i més serradures. Hi calen aproximadament cinc tones de material sec per a produir una tona de combustible. La petita refineria consumirà aproximadament 70.000 tones de rebuig de fusta a l’any. “Proveir aquesta quantitat hauria de ser molt fàcil”, assegura Michael Deutmeyer, responsable de subministrar biomassa a Choren.

Ara, serà considerablement més difícil de satisfer les necessitats de matèria primera de les refineries a gran escala que Choren preveu construir pròximament. La primera d’aquestes grans plantes hauria d’entrar en servei el 2012 a la ciutat de Schwedt, a tocar de la frontera amb Polònia. La instal·lació prevista produirà 200.000 tones de dièsel BTL l’any –i devorarà milions de tones de fusta i més materials secs. Només els productes de rebuig no seran suficients per a sadollar el fort apetit d’aquesta indústria.

Per satisfer aquesta creixent demanda, Deutmeyer preveu plantar arbres. La fusta és la matèria primera més adequada per al processament de biocombustible. Fa tres anys, a l’est de Schwerin, la capital de l’estat federal de Mecklemburg–Pomerània Occidental, Choren va convertir 20 hectàrees en “plantacions ràpides d’arbrells per a la serradora”, on floreixen àlbers i més espècies de creixement ràpid.

Les plantacions, afirma Deutmeyer, demanen quantitats significativament menors de pesticides i adobs que conreus com ara la colza. Aquest tipus de silvicultura, a més, també atrau subvencions públiques considerables. El Ministeri d’Agricultura de l’estat de Brandemburg ja ha manifestat que dotarà amb fons públics les plantacions destinades a fornir fusta una planta que s’haurà de construir a Schwedt. L’erari de l’estat finançarà fins el 45% de les inversions en concepte de plançons, preparacions i mesures de millora del terreny.

Els camps experimentals de Mecklemburg ja han estat collits una vegada, i els arbres reduïts a encenalls amb una trituradora especial duta des de Suècia. Els resultats són prometedors. En bons terrenys es poden collir quantitats fins a 20 tones de material sec per hectàrea. Això abocaria una taxa de producció de quatre tones mètriques –o 5.000 litres– de dièsel BTL per hectàrea. Fins ara, els camps de colza comparables en extensió només n’havien produït 1.500 litres.

Amb xifres com aquestes, el BTL és el primer combustible líquid de base vegetal que podria constituir un succedani viable dels combustibles fòssils sense competir directament amb la producció alimentària. Segons l’FNR, a Alemanya es podrien usar fins a 6 milions d’hectàrees de terra per al conreu de plantes destinades a la producció d’energia. Això correspon a més d’un terç de l’àrea utilitzada actualment per a l’agricultura. L’agència diu que aquesta superfície podria formar la base dels productes BTL i satisfer una quarta part de les necessitats de combustible d’Alemanya. A escala europea, el potencial de substitució podria assolir fins i tot el 40%, tenint compte de les vastes àrees disponibles en els nous estats d’Europa de l’Est.

Christian Wüst (© Der Spiegel). Publicat a El temps. Juliol 2008

Tunel Electromagnetic….

Científicos norteamericanos han descubierto una fórmula que permite crear un túnel electromagnético (similar a un agujero de gusano) que anula el espacio entre los extremos. Es decir, si colocas un objeto en ese túnel, será invisible, inoloro e insípido. Enlace al informe (con la fórmula mágica) y más fotos, a continuación.

ún no se dispone de los materiales necesarios para construir este invento, pero cuando se pueda, el túnel permitirá que un objeto viaje de un lado al otro del espacio sin recorrer distancia alguna. Conseguir viajes como en Stargate será el siguiente paso.

Túnel invisible agujero de gusano

Publicat a Gizmodo.es octubre de 2007 — Juan A. Vicente

L’article sencer es pot descarregar aquí

Ozó, el regal enverinat

Les grans conurbacions urbanes de l’arc mediterrani generen una part important dels contaminants de l’atmosfera. Tot i això, són les zones de l’interior de Catalunya i el País Valencià les que reben bona part d’aquestes emissions, transformades en ozó. La brisa n’és la causa principal.

El passat 27 de maig, al Servei de Vigilància i Control de l’Aire de la Conselleria de Medi Ambient de la Generalitat de Catalunya es degueren encendre totes les alarmes. L’estació de mesurament de la qualitat de l’aire de Camp de Tarragona, a Reus, va marcar uns nivells d’ozó per damunt de l’anomenat llindar d’alerta. Aquell dia, a les 10 h del matí es registraven 246 micrograms per metre cúbic, la xifra més alta d’entre les recollides als Països Catalans durant el 2005. El cas de l’estació del Camp de Tarragona és extrem, però això no lleva per recordar-nos que la contaminació per ozó, generada per l’emissió de gasos contaminants, sobretot procedents dels automòbils, és un problema amb què convivim en el dia a dia.

Això ho saben bé a les zones de l’interior tant de Catalunya com del País Valencià. A Vic (Osona), Sorita (Ports) o Caudete (Utiel-Requena), no es registren embussos de cotxes en acabar la jornada laboral; ni es concentren polígons industrials; ni s’abusa de la utilització d’energies elèctriques. Però, a pesar de tot, són les estacions de control de l’aire situades en aquestes localitats les que detecten els nivells més alts de contaminació per ozó.

El vent, en el seu trajecte del litoral cap a l’interior, és el carter encarregat de traslladar aquest regal enverinat cap a les zones de l’interior de l’arc mediterrani. Només a l’estació de Vic, entre els mesos de maig a setembre, es van registrar 46 casos de nivells d’ozó per damunt del que la Unió Europea considera perjudicial per a la salut. A Pardines (Ripollès), es va superar en 53 ocasions. I a Morella (Ports), en 41. Hi ha motiu per preocupar-se per aquestes xifres? En principi, no cal ser alarmista, però tampoc no hi ha perquè despreocupar-se.

L’ozó, un contaminant secundari. L’ozó és un gas incolor, invisible i d’olor agradable que es troba de manera natural a l’atmosfera. La concentració és màxima a uns 20 quilòmetres d’altura, dins de l’estratosfera. És l’anomenada capa d’ozó, que ens protegeix de les radiacions ultraviolades procedents del sol. Però l’ozó també es troba en la troposfera, la capa de l’atmosfera més propera a la superfície terrestre. Quan se superen els nivells de concentració superiors als habituals, passa a considerar-se un contaminant. I com es genera l’ozó troposfèric? Per saber-ho, cal tenir en compte que hi ha dos tipus de contaminants, els primaris i els secundaris. L’ozó és un contaminant secundari, és a dir, que no s’emet directament a l’atmosfera, sinó que es forma a partir de reaccions fotoquímiques entre contaminants primaris i més concretament entre òxids de nitrogen i compostos orgànics volàtils. La radiació solar es converteix en el tercer element en discòrdia en aquesta particular barreja. Una volta es produeix la reacció, l’ozó ja es troba en l’aire i pot començar a actuar. L’ozó troposfèric “no és un contaminant primari, que puguem anar i tancar-ne l’aixeta, i s’ha acabat”, explica José Vicente Miró, responsable de l’àrea de Qualitat Ambiental de la Generalitat Valenciana, “és un contaminant secundari que desencadena moltes reaccions en l’atmosfera i que en moltes ocasions depèn d’elements del tot aliens”.

Segons la major part dels experts, la contaminació que genera el trànsit és la causa principal de la contaminació per ozó troposfèric, molt per davant de les indústries. “Tenim cotxes més lleugers, que contaminen molt menys i que emeten menys gasos a l’atmosfera” explica Miró , “però l’augment del parc automobilístic és tan gran que una cosa no compensa l’altra”.

Ara bé, què té a veure això amb els veïns dels Ports o d’Osona, on el parc automobilístic no arriba, ni de lluny, al de Barcelona o València? Doncs, poc o molt, segons com es miri. Perquè encara que els elements contaminants es generen en les grans concentracions urbanes, el fet és que els seus efectes es deixen notar sobretot en les zones d’interior. L’explicació és simple: “Vivim en una zona molt exposada a la brisa marina”, explica José María Baldasano, catedràtic d’Enginyeria Ambiental de la Universitat Politècnica de Catalunya, “amb vents que van des del litoral cap a l’interior” i que a més es veuen reforçats pels “vents ascendents característics de les muntanyes del litoral”. Durant aquest recorregut, els contaminants generats en zones urbanes pateixen transformacions fotoquímiques que provoquen el canvi en la composició de la massa aèria, inicialment rica en espècies primàries i, progressivament, carregada d’espècies secundàries com l’ozó.

Així les coses, el que ocorre és que mentre que els pobles d’interior queden exempts de contaminants primaris, el nivell de contaminants secundaris és molt més alt. El fenomen s’accentua sobretot durant la primavera i l’estiu, època de l’any en què, a més, les distàncies de penetració són molt majors. Els pics més alts per contaminació atmosfèrica es registren, doncs, a partir de mitja vesprada en les zones d’interior. A l’acció del vent, que transmet aquesta contaminació, se suma, segons Baldasano, el tipus de vegetació del bosc mediterrani, i en especial els matolls, “que són grans emissors de compostos orgànics volàtils”, que contribueixen a generar ozó.

És perillós l’ozó? Avaluar quins són els efectes de l’excés d’ozó sobre l’ésser humà a llarg termini és difícil. En principi, la Unió Europea va ser la primera a interessar-se per la qüestió i establir uns estàndards que resulten preceptius per a tots els estats membre. La directiva europea estableix en 120 micrograms per metre cúbic el llindar a partir del qual la concentració d’ozó pot generar problemes en la salut a llarg termini; 180 micrograms com a referència a partir de la qual cal informar-ne la població, i 240 quan es genera una alerta a la població.

De moment, els experts no saben quins són, a llarg termini, els efectes de la contaminació per ozó, ja que l’interès per la matèria és massa recent per establir conclusions. En tot cas, sí que es coneixen quins són els efectes que pot generar de manera immediata: tos, irritacions al coll, als ulls, dificultats respiratòries, disminució del rendiment, empitjorament de la funció pulmonar i símptomes de malestar general. “Però tampoc no cal alarmar-se –asseguren des de la Generalitat Valenciana–, això no significa que a tot el món li afecte de la mateixa manera, sinó que per patir un d’aquests episodis cal que convergesquen una sèrie de condicions que és difícil que es donen així com així.”

Sense caure en l’alarmisme, no s’ha de perdre el pas a aquest problema. A la zona de la Plana de Vic s’han enregistrat concentracions d’ozó per damunt del nivell que la Unió Europea considera perjudicial per a la salut en 57 ocasions, concentrant-se sobretot en els mesos de juny, juliol i agost. Els nivells d’informació es van superar en 27 ocasions. A l’àrea d’influència de Tarragona, es van superar els 180 micrograms –xifra a partir de la qual els departaments de medi ambient estan obligats a informar-ne la societat– per metre cúbic en almenys 11 ocasions, a causa “de la presència de la indústria petroquímica”, segons José María Baldasano. Al Pirineu Oriental es va superar el llindar en 9 ocasions, i 6 a les Terres de Ponent.

Al País Valencià, va ser l’estació de Morella la que va encapçalar el rànquing: en 41 ocasions es va haver d’informar la població de la superació dels nivells perniciosos per a la salut. Per darrere van quedar estacions del mateix àmbit dinfluència, com ara Coratxar o Vallibona. La comarca dels Ports, amb una població que no arriba als 7.000 habitants, disposa de tantes sales de control com la zona de la Plana Alta, on hi ha poblacions com Castelló, Alcora o Onda. Si això és així és perquè en aquesta comarca es van enregistrar a final de la dècada dels vuitanta greus problemes generats precisament per una central tèrmica radicada a Andorra (Terol), a uns 70 quilòmetres de distància. Des d’aleshores, la Conselleria controla exhaustivament uns nivells de contaminació atmosfèrica que, en el cas de l’ozó troposfèric, els experts estimen “crònics”, encara que no es poden atribuir a la central sinó a la inèrcia dels vents i a l’orografia de la zona.

Siga com siga, les comarques de Castelló van camí de convertir-se en el forat negre pel que fa a l’ozó. Segons dades del mes de setembre, el límit de 120 micrograms per metre cúbic s’havia superat en almenys 142 ocasions, el 70% de les extralimitacions detectades al País Valencià. La contaminació atmosfèrica també és preocupant a la zona de la Plana Alta, on es concentra bona part de la indústria taulellera. Segons José Vicente Micó, a la contaminació derivada de la contaminació autòctona cal afegir-hi, a més, la que porta el vent procedent d’altres indrets del continent, i en concret, de la refineria de Fos Berre, propera a Marsella, o la de Piombino, a Itàlia.

La situació és molt diferent a les Illes Balears, on durant el 2005 cap de les quatre estacions de què disposa el Consell balear ha registrat nivells superiors als que ha establert la Unió Europea. Segons Patrícia Conrado, directora general de l’Oficina del Canvi Climàtic del Consell Balear, l’absència d’ozó és deguda a la condició d’insularitat, ja que comporta que estem envoltats per molts corrents d’aire que ajuden a dispersar la contaminació més fàcilment.

Siga com siga, Balears és l’excepció, però l’ozó porta camí de convertir-se en un problema endèmic en la zona del litoral mediterrani. “Catalunya i el País Valencià són els llocs on es concentra més turisme i més tràfic”, explica Baldasano amb certa resignació, i “no hi ha miracles mentre no hi haja una reducció del trànsit”.

Xarxes per atrapar la contaminació

Des que la Unió Europea va promoure la directiva sobre avaluació i gestió de la qualitat de l’aire ambient, l’any 1996, les institucions han hagut de posar-se les piles per fer efectiva aquesta norma. La Generalitat de Catalunya encomana aquesta tasca al Servei de Vigilància i Control de l’Aire del departament de Medi Ambient i Habitatge, encarregat d’informar la població cada volta que se superi el llindar de 180 micrograms per metre cúbic d’ozó troposfèric. Seguint tota una sèrie de criteris, el territori de Catalunya va quedar dividit en quinze zones de qualitat de l’aire, entre les quals hi ha distribuïts 211 punts de mesurament en un total de 93 municipis. En el cas de les Illes Balears, l’Oficina del Canvi Climàtic acaba d’incorporar dues noves estacions per mesurar la qualitat de l’aire a Eivissa i Menorca, les quals se sumen a les altres dues que des del 2001 ja hi havia a Mallorca.

En el cas del País Valencià, es van establir catorze zones d’estudi seguint els límits que marcaven les conques dels rius Cèrvol, Millars, Palància, Túria, Xúquer i Vinalopó, els quals poden condicionar la direcció de l’aire que entra des del litoral. En territori valencià hi ha distribuïdes 46 estacions de mesurament de les quals pren cura la Xarxa de Vigilància i Control de la Contaminació Atmosfèrica. Entre les tasques d’aquestes entitats hi ha, a més d’actualitzar les dades cada deu minuts, la d’enviar avisos als centres d’emergència i als municipis on es registren nivells de contaminació superiors als 180 micrograms per metre cúbic. Aquestes xarxes i departaments s’encarreguen també de fer previsions d’un dia per a l’altre.

Violeta Tena. Publicat a El Temps. 7 de febrer de 2006

L’element 118( de la taula periodica)

Ja se sabia que l’element 118 havia d’existir, però ara s’ha demostrat gràcies a un accelerador de partícules rus. El bentrobat es diu ununocti, el seu símbol, uuo, i el seu principal descobridor, Iuri Oganessian.

És conegut que el 1869 un siberià de trenta-cinc anys, de cabell llarg i barba poblada, amb fama de geniüt i malhumorat, feia pública una ordenació dels elements que va sorprendre tothom. Aquesta classificació, proposada per Dimitri Mendeleiev, però trobada també paral·lelament per l’alemany Lothar Meyer, ordenava els elements segons les seves masses atòmiques i remarcava el fet que, seguint aquest ordre, algunes de les propietats dels elements es repeteixen periòdicament per certs valors de les seves masses. S’estava davant de l’embrió del que avui es coneix com a taula periòdica dels elements. La proposta de Mendeleiev generà una gran expectació en la comunitat científica, sobretot perquè mantenia alguns espais buits que corresponien a elements que encara no havien estat descoberts, fet que permetia, per comparació, predir algunes de les propietats físiques i químiques d’aquests elements encara desconeguts.

Els buits corresponien als elements de masses atòmiques 44 (escandi), 68 (gali), 72 (germani) i 100 (tecneci), els tres primers dels quals foren descoberts pocs anys després de l’aparició de la taula, la qual cosa va permetre comprovar les prediccions que se’n deduïen i reafirmar-ne la validesa. Anys més tard, el 1912, el britànic Henry Moseley, a partir de l’anàlisi dels espectres de raigs X dels elements, proposà una nova ordenació, aquesta vegada segons el nombre de protons que conté el seu nucli (magnitud coneguda com a nombre atòmic), que corregia algun defecte de la proposta anterior i que esdevingué amb el pas del temps la taula periòdica actual.

Nous elements. La física del segle XX ha deixat força clar que el món està fet de noranta elements que existeixen de manera natural. Des dels anys quaranta, però, els físics han estat capaços de fabricar artificialment elements més pesats, que també acostumen a ser més inestables. Aquests nous elements, breus, efímers, ja que la majoria tenen vides de fraccions de segon, resulten de gran utilitat per testar els models que la física nuclear proposa per descriure el comportament dels nuclis atòmics. Fins ara els físics han pogut fabricar nuclis de 29 d’aquests elements, anomenats superpesats, amb nombres atòmics compresos entre 104 i 118.

Falsa alarma. El 1999 un equip dels Estats Units format per científics de la Universitat de Berkeley i la Universitat de l’estat d’Oregon va anunciar la detecció de tres àtoms de l’element 118 en unes col·lisions de ions de kriptó d’alta energia contra un objectiu de plom. Laboratoris d’arreu del món, entre els quals destacaren el japonès Riken i l’alemany GSI, van posar-se immediatament a reproduir l’experiment, sent conscients que l’estudi d’un nou element pot aportar informació molt diversa i de gran valor sobre el comportament del nucli atòmic. Però va resultar que cap d’aquests laboratoris de primera línia mundial no va ser capaç d’observar el nounat. La polèmica va estar servida i va durar fins que al 2002 els presumptes descobridors, després d’una profunda revisió, van anunciar que de les seves dades no es podia inferir l’existència de l’element 118. Aquesta falsa alarma fins i tot va donar lloc a una investigació per conducta inapropiada, que va afectar un dels autors del fals descobriment.

L’element 118, per fi. El passat 9 d’octubre, la revista Physical Review publicava els resultats obtinguts per un equip format per científics del Joint Institute for Nuclear Research (JINR) de Dubna, a Rússia, i per científics del Lawrence Livermore National Laboratory, a Califòrnia, els quals anunciaven, ara sí, el descobriment de l’element 118. Aquests resultats han estat obtinguts gràcies als experiments realitzats l’any passat a l’accelerador de partícules del JINR, a l’interior del qual es va bombardejar un objectiu de californi (element de nombre atòmic 98) amb un feix de ions de calci-48. Durant aquests bombardeigs els científics van poder observar una cadena de desintegracions només explicable per l’existència d’un element de nombre atòmic 118. “L’element 118 és l’últim en les sèries d’elements superpesats produïts en reaccions nuclears amb calci-48”, constata Iuri Oganessian, el líder de l’equip de Dubna. I afegeix: “De moment, totes les dades experimentals apunten cap a l’existència d’una ‘illa d’estabilitat’ a la regió dels elements superpesats, tal com prediu la teoria.”

El descobriment de l’element 118 i l’experimentació posterior a què donarà lloc pot ajudar els físics a entendre per què alguns nuclis són més estables que d’altres, és a dir, perquè alguns nuclis triguen més temps a desintegrar-se que d’altres, i aportar noves pistes sobre facetes encara misterioses del comportament nuclear. A més, aquest resultat augmenta fins a 5 el nombre d’elements superpesats detectats per la col·laboració entre els laboratoris rus i nord-americà, que ja havia fabricat els elements amb nombres atòmics 113, 114, 115 i 116. Per a l’any vinent, l’equip transoceànic es planteja de trobar l’element 120, mitjançant el bombardeig de plutoni amb feixos d’isòtops de ferro.

Publicat a El Temps 14 novembre 2006

La potencia que consumeix el TGV…

L’equip d’enginyers de la divisió de transports de Siemens amb seu a Alemanya té un rècord mundial propi, pel que fa a la producció en sèrie de trens. El Velaro E, una versió millorada de l’Intercity Express (ICE3), va assolir una velocitat punta de 403,7 quilòmetres per hora, ara fa sis mesos. Quan siga en servei, anirà de Madrid a Barcelona a uns 350 quilòmetres per hora, un rècord mundial per al transport regular de passatgers. El Velaro va equipat amb 8,8 megawatts de capacitat de propulsió, un 10% més que el model ICE3, que es fa servir actualment a Alemanya. Aquesta capacitat de propulsió permet al Velaro de salvar la distància de 625 quilòmetres entre Madrid i Barcelona en dues hores i mitja. És ben possible que les rutes aèries entre aquestes dues ciutats desapareguen, com ha passat sempre que s’han reduït els temps del trajecte entre dues grans ciutats gràcies a la gran velocitat, com ara entre Berlín i Hamburg, cosa que beneficia el medi i el clima.

Siemens estima que el tren, amb una ocupació estable, emetrà només 30 quilograms de diòxid de carboni per passatger. El transport aeri n’emetria 85 quilograms. Però, fins a quin punt poden augmentar les velocitats dels trens sense perdre els beneficis envers el medi? Els experts aerodinàmics del Centre Aerospacial Alemany (DLR), l’agència espacial del país, creuen que els límits acceptables de la viabilitat tècnica s’assoleixen a uns 400 quilòmetres per hora.

Aquest nombre és, si més no, el punt de referència d’un projecte de recerca que Sigfried Loose, un expert en aerodinàmica de la DLR, amb seu a Göttingen, duu a terme amb Bombardier, el fabricant de trens canadenc. El projecte porta per nom Tren de Nova Generació i pretén posar les bases del tren del futur. Aquest tren serà “més ràpid, més lleuger i més segur, i alhora no tan sorollós”, ens promet el president de DLR, Johann-Dietrich Wörner. Evidentment, sap molt bé que aquestes qualitats que anuncia, en física, s’exclouen mútuament.

L’objectiu principal de Loose és eliminar els problemes seriosos, la solució dels quals és absolutament prioritària abans de continuar fent augmentar la velocitat dels trens. El problema principal és el perill del vent lateral, segons ell.

… publicat a El Temps. 28 maig de 2007

CHERNOBYL – 20 YEARS, 20 LIVES

published by WISE/NIRS Nuclear Monitor on June 9, 2006

The twentieth anniversary of the worst nuclear accident to date has been observed around the world and reported by all sections of the media yet it would appear that, on the whole, we are still unable to fully grasp its significance or the impact it continues to have on our lives and our environment.

(645-646.5753) WISE Amsterdam – Reports have been released by various global agencies reassuring us that fears of widespread contamination, deaths and long-term illnesses linked to radiation released from Chernobyl have been greatly exaggerated by hysterical environmentalists. We have been told that there is no longer any need to be wary of Chernobyl or indeed nuclear power plants, which we are now expected to believe are safe and clean enough to be re-branded as renewable sources of electricity. We are now being encouraged to view nuclear power as our greatest ally in the war against climate change and if some reports are to be believed, the majority of us are now willing to accept new nuclear capacity in order to maintain our unsustainable lifestyles.

In such a climate, it is more important than ever to re-tell the story of the Chernobyl disaster from the perspective of those who experienced the accident at first hand, and those who continue to live with the consequences on a daily basis. It is more important than ever to remember that two decades on, millions of people still continue to suffer the consequences and will continue to do so for the remainder of their lives. April 26 marked the twentieth anniversary of the explosion but the disaster did not end on that date, there is no end.

The “Chernobyl – 20 Years, 20 Lives” project conceived by Danish photographer Mads Eskesen is a photo documentary journey through the experiences of twenty people whose lives have been forever altered by the devastating nuclear explosion at the Chernobyl nuclear power plant on April 26, 1986. The project documents the activities undertaken by people in order to adapt to the reality of life after the Chernobyl disaster. From villagers in Belarus soaking mushrooms in water and vinegar to reduce the amount of radiation they contain to a Welsh farmer whose sheep must be scanned before they can be passed fit for slaughter and human consumption. We are introduced to a Belarusian professor who measures the accumulated radiation in school children in the South of Belarus and also to the former director of the Chernobyl nuclear power plant who believes that a positive attitude has stopped him from becoming sick. Each person interviewed expresses their own views on the importance of the explosion and its impacts, some believing that Chernobyl ruined their lives, while others still believe that the health effects are negligible. Each was given the same opportunity to have their perceptions recorded.

An exhibition based on the stories of the twenty has been travelling around the world in an effort to offer some insight into the fate of a few of the many victims and reveal some of the impacts of the continuing catastrophe. The stories of these 20 people from all walks of life can help us to absorb the significance of the accident and its impact on humanity.

The personal stories brought to life in this project took three years to compile and took Eskesen on a journey through the Ukraine, Belarus, Russia, Latvia, Sweden, France, and the UK. The following is a snapshot of each of the twenty stories featured.

Hanna Kozlova
Housewife, Founder of the organisation ‘Marked by Chernobyl Atom’, Kiev, Ukraine.

    “I realised that nobody was concerned about us and nobody would take care of us after the disaster. It was our own problem and we were the only ones who could deal with it. At that point I felt very lonely. It was only through me that my child could be heard.”

Hanna Kozlova bursts into tears as she tells of her family’s misfortune. She clearly is marked by Chernobyl.

In the early 1980s Hanna lived in Pripyat and her husband worked at the nuclear power plant three kilometres away. Right after the explosion on April 26, Hanna went outside with their four-year-old son Viktor, ignoring a man on the street who had advised her to stay indoors. She noticed that men wearing masks were washing the streets and wondered what was going on. There was a strange metallic taste in her mouth. Iodine pills were handed out but Hanna did not take any. She simply could not believe that anything serious could have happened.

Hanna belatedly came to understand the events of that night when her son developed thyroid cancer. “When I heard my son’s diagnosis the first time I did not believe it. It could happen to anyone else but me. I screamed at the top of my voice. When I was told that there was nothing they could do, I refused to believe it. When my child had an operation I was told that the result was not yet certain. I refused to believe that too.”

Hanna fought courageously in order to get the right medical treatment for her son and decided to form the organisation ‘Marked by Chernobyl Atom’. The name referred to the post-operative scars the children have on their necks. Many similarly disheartened mothers contacted her for advice. Hanna and the other women demonstrated in front of government buildings in Kiev demanding radioactive iodine treatment and medicine for all children. The group also organised rehabilitation trips abroad for the kids but with time it became more difficult to obtain money for all the activities and eventually the organisation was disbanded.

Grigoriy Sorikov
Pensioner, Bartolomeevka village, Belarus

    “The day after the accident there was an old aeroplane, an E2 I think, flying very low, about 300 metres above ground, to and fro, to and fro. It seeded something on the clouds and then it rained here. I myself saw how it did it. The plane flew to and fro. First there was a cloud and then it disappeared. The clouds fell down to earth as rain and the sky cleared.”

Grigoriy rolls a cigarette from a piece of torn newspaper and his homemade tobacco, leans back and looks out over his radioactive garden. He is a born optimist, and despite the lack of electricity he loves living in his peaceful place. “It costs nothing to live here and there is water in the well nearby. All the food is grown in the garden.” In the forest there are mushrooms and berries to be picked and sold to people passing by on the main road.

Bartolomeevka is a village situated in southern Belarus. It is just as contaminated as the area around the Chernobyl plant 200 kilometres away. In contrast to the closed zone around the nuclear power plant, access to the village is not restricted.

Since 1986 there has been much secrecy and mystery concerning the reason why the area is so contaminated. Grigoriy story could offer one explanation as he tells of the morning in April 1986 when he noticed that the water in the puddles was green – a fighter plane had shot chemicals into the air so that the radioactive cloud from Chernobyl rained down, thereby preventing it from continuing on its way to populous Moscow.

The radioactive cloud was heading for a city with millions of inhabitants therefore urgent action was necessary. The people who would instead suffer the consequences were neither warned nor offered any explanations. At that point nobody knew that the Soviet Union would disintegrate some years later and leave the huge challenge of clearing up to a small totalitarian country with limited economic means.

It was not until 1989 that the scientific community in the West received information about how serious the contamination of southern Belarus was. For many years no one concerned themselves with the people living there, nobody was analysing the soil and no human rights organisations arrived to complain about how radioactive rain had been allowed to fall on the local population.

Igor Komisarenko
Director of the Komisarenko Institute for Endocrinology and Metabolism, Kiev, Ukraine

    “If you visit different medical institutes here, they will tell you that they have noticed an increase in some disease or other. Why is there such an increase? You can assume whatever you like. Chernobyl is just like a big laboratory in the Ukraine, where people were used as guinea pigs.”

For Igor Komisarenko time is split into two periods, before and after Chernobyl. Before Chernobyl there were one or two cases of thyroid cancer per year but by 1989 the number had increased to up to seven per year. In 1991, he saw 21 new cases and by 1994, there were around 41 new cases.

“It was the endocrine organs, e.g. the thyroid gland and reproductive system, that were affected first,” Igor remembers. “Also the mucous membranes, stomach and bowel, blood and other organs are influenced by radioactivity. We will continue to be affected out here in this country because we still have many radioactive elements that are active and influence our bodies.”

The thyroid gland produces vital hormones that regulate the body. They affect the brain of the foetus, the development of the skeleton, human intelligence and so on. After birth the hormones continue to control all the body’s processes. The hormones produced by the thyroid gland controls fundamental aspects of a person’s life. They contain iodine but iodine is also found in a radioactive form, which affects the development of the cells in the thyroid gland – and this can cause tumours. “Several million curies of radioactive iodine escaped into the atmosphere. We failed to take preventive measures with supplementary iodine. The thyroid gland is the very first to be affected” says Igor.

Before Chernobyl thyroid cancer did not appear in the statistics and the few cases that occurred were registered under ‘other types’. Today it has its own column heading. The latent period is three to four years for children and seven to ten years for adults. Therefore the illness manifests itself only several years after the exposure.

In 1981 there were 0.05% children with cancer cases, in 1996 this proportion increased to 0.5%. 50% of all the cancer patients came from the regions closest to Chernobyl. A significant rise that is due to the fact that those who were children and teenagers at the time of the accident are now adults. Igor expects the figure to continue rising as the group ages.

In order for society to be able to respond to the conclusions of the scientific community, you first have to ‘adapt science to politics’, as Igor expresses it. The increase in the number of cases of thyroid cancer was not officially recognised as a consequence of Chernobyl until 1996.

Georgiy Reichman
State Inspector for Radiation Safety, Ukrainian Committee for Nuclear Regulation, Slavutich, Ukraine

    “When people say that the operators were not good enough, it is not true. They were experienced enough to work at the plant under normal conditions. But the reactor was in such a state that it was difficult to predict anything. They did not have enough information to foresee events and make decisions. It would not be decent of me to say that I would have done things differently. It is not decent towards those who died that night.”

In 1986 there were four reactors at the Chernobyl nuclear power plant. The fifth reactor was supposed to start operating by the end of the year. At that time Reichmann was responsible for training new employees in the control rooms.

Looking back at the accident, he says that the reactor should have been constructed so that it could not explode irrespective of the operators’ actions. “I believe that the reason for the accident lies in the design defects. Since such a situation was not predicted, the operators did not have any chance.”

As a vice-manager of the fourth reactor Reichman coordinated the construction of the concrete encapsulation of the damaged reactor. The project has been described as one of the most difficult construction tasks ever undertaken. First a tunnel was made under the ruined reactor, where a square concrete slab was built. Afterwards, an inner wall separated the third and fourth reactors.

The high radiation levels impeded detailed inspection of the stability of the existing structures. Concrete constructions were lifted into position by remotely controlled cranes. All efforts were put into finishing the ‘sarcophagus’ as soon as possible. The monstrous task was completed in a record time of seven months. All the equipment used was then transported and dumped with other highly radioactive waste.

A concrete lid was laid over the reactor, but the discussions in the international community raged on. Chernobyl became a discussion forum where passions ran high and accusations were exchanged back and forth. Some pointed out that the sarcophagus was not built well enough. Others accused the Ukrainians of using it as a money machine. In 1997 the ‘Chernobyl Shelter Fund’ was established with the purpose of building a more permanent containment. With the budget of 870 million Euros, the plan is to build a gigantic self-supporting bow-shaped construction that will contain both the destroyed reactor and the concrete sarcophagus.

Reichman’s next task is to ensure radiation safety for the employees working on this mega project. “If one includes all the systems, I believe it will cost about 1-1,5 billion dollars. Who knows whether it is the right decision? All the constructions that we built in 1986 were finished in seven months and expected to last 30 years. The quality could have been better, but after 20 years I can say that they were better than nothing.”

Glyn Roberts
Sheep farmer, Betws-y-Coed, Wales, United Kingdom

    “We were very surprised at the idea that Chernobyl could influence us here. The first year was awful. We could not sell any of our lamb. Everything came to a standstill. I was terrified, as I had started breeding sheep only three years earlier. We did not get any compensation until the end of the year. I was furious. If the government wants to have that nuclear energy, then it had better have some kind of backup-plan for when something like this happens.”

Six days after the Chernobyl accident a radioactive cloud reached the British Isles, where it rained its contents over Wales, Cumbria and southern Scotland. At first the officials believed that the level of contamination was low. Farmers continued at their own steady pace and the Welsh sheep kept on eating the grass that had been showered with a solution of radioactive caesium. It was the end of June before it was discovered that in the mountains there were areas where contamination exceeded the permitted levels. “I was in the market, when the announcement from the agricultural secretary came.” says Glyn. “We were not allowed to move or sell our animals due to the possibility of our sheep being contaminated”.

The restrictions were applied to an area of 4,100 km2 in northern Wales in order to prevent further spreading of radioactive elements into the food chain. However no information about the Government’s long-term plans was forthcoming.

Sheep farmers were used to selling lambs when they were ready to be slaughtered but in 1986 they were forced to keep all their animals and apply for additional bank loans to keep businesses going.

Following a meeting between 300 angry sheep farmers and a representative of the Welsh Government on September 3, a system was established allowing farmers to scan sheep before selling them. However the consumers’ faith in Welsh lamb had been shaken and the prices fell by over 50%.

Still, 20 years on, selling or slaughtering sheep is a complicated procedure for farmers. “I ask for a permit and people from the Ministry come to count and scan the animals,” Glyn explains about the process. “We use red paint to mark the sheep that should be slaughtered. Afterwards we scan them. If the sheep is fine and can be eaten, it gets tagged in the ear.” “The problem is the type of soil that we have here,” says Glyn. “It contains a lot of peat. Due to some scientific reason caesium tends to circulate in that kind of soil.”

Vasiliy Nesterenko
Director of the Belarusian Institute for Radiation Safety, Minsk, Belarus

    “I could see that this technology was very risky. It is not possible to combine nuclear power with modern set of ethics. In truth it is a technology of the future for people with higher morals. It was painful for me to acknowledge that. I had to revise everything I believed in and occupied myself with up till then. I decided to work towards protecting children from radioactivity. They were the ones who suffered most back then.”

Vasiliy Nesterenko has endured constant pressure from authorities because of his efforts to help the Belarusian people live with radiation.

When the Soviet government began gathering all its specialists to attempt extinguishing the fire at the Chernobyl reactor, Nesterenko was taken to the site of the catastrophe. His institute was given the task of compiling the first map on the contamination of Belarus. Just like other documentation, the population only got to see it after 1989.

“We had around 3,700 contaminated villages. There were 2,500,000 people living in them. 500,000 of them were children,” says Nesterenko.

In the early 1990s Nesterenko established the independent Belarusian Institute for Radiation Safety (BELRAD). Its aim was to create a network of public centres that could monitor foodstuffs, measure the accumulation of radioactivity in children and educate people on how to protect themselves. 370 centres were opened however in 1993 the government cut their number to 160. Today only 40 remain and western donors now finance all those.

Although the Belarusian government has expressed the desire to deal with the situation in the country it lacks the capacity. It has been calculated that the damage inflicted due to Chernobyl is almost 32 times the national budget over a period of 30 years. According to Nesterenko the government spends up to 20% of its annual budget on various Chernobyl-related programmes, but this is equivalent to just 10% of what is necessary.

Since the population of Belarus is forced to live with a permanently higher radiation level, BELRAD recommends a specific diet to help improve the health in the region. The Institute developed a dietary supplement powder, based on apple pectin, which it claims cleanses the body of heavy metals and radioactive nuclides. A child on the diet is advised to take pectin for 15-20 days every month. BELRAD states that on this regime 50-80% of the radioactive nuclides can be eliminated from the body. The whole treatment cycle costs no more than 110 Euros annually per child.

Sergey Volkovs
Liquidator – clean-up worker at Chernobyl, Jecabpils, Latvia

    “In the Soviet Union humans counted for nothing. They were zero to the officials. They could have recruited people in their middle age, who already had families and children. One should not have sent young people like me to Chernobyl. The government put an end to our lives. It destroyed our future.”

Sergey’s anger about the way the Soviet system treated its people has turned against Russia nowadays, even though his family has Russian roots.

After the Chernobyl accident young people from the entire Soviet Union were mobilised to help. It is still unclear how many people participated in the clean up, but estimates suggest several hundreds of thousands. Many of them came from the Baltic countries situated near to Chernobyl.

In May 1986 Sergey became a driver of an armoured vehicle transporting ‘reactor guards’. They were military engineers who monitored the processes in the reactors. In between these transport tasks Sergey patrolled the town of Pripyat to prevent looters from robbing the abandoned houses.

After one week in Chernobyl, Sergey began feeling disoriented. “We understood everything but reacted very slowly,” he says. When they parked cars, their feet would not press the break pedal at the right time and they would bump into other cars. Many drivers experienced the same difficulties and it became quite dangerous with the intensive traffic in the zone.

Sergey says that the officers he transported calculated the radiation level that he accumulated as well above permissible levels. Unfortunately, his superior was not interested in hearing about the high radiation dose or about his deteriorating reaction capabilities. All the documents registering radiation levels were discarded.

Initially the soldiers were promised financial support, holidays and shorter military service upon their return from Chernobyl. Sergey got free telephone installation, but otherwise received no special benefits when he returned home.

Today he is 38 years of age with the physique of a 55 year old. He used to be a strong young man, but now he gets nosebleeds several times a month and suffers from serious migraines. Occasionally his breathing stops during a migraine attack. According to Sergey’s doctor in Riga, Chernobyl liquidators age 10-15 years earlier than other people.

Sergey cannot get any government jobs. It is never stated directly, but as soon as he reveals that he worked at Chernobyl, his applications are declined. Private companies underpay him, because they think that he gets money from the state and many extra benefits.

Constantine Checherov
Nuclear Physicist, Kurchatov Institute, Moscow, Russia / Slavutich, Ukraine

    “Nobody orders me to do this, nobody forces me to do it. When I enter the fourth reactor nobody and nothing can disturb me. There are no people around checking the radiation dose that I get there. I am in another world, a world of freedom – of pure euphoria and joy. I was the very first person in the world to see the reactor from the inside.”

Checherov is one of the very few people in the world who make expeditions into the exploded reactor encapsulated in concrete at the Chernobyl Nuclear Power Plant. In April 1986 he and his colleagues from the Kurchatov Institute in Moscow were asked to de-activate the buses used to transport the first victims from Moscow airport to the hospital in the city. The sick people had made the buses radioactive. In June Checherov arrived at the scene of the accident, which was to become his working place for many years on.

Based on his own observations of the destroyed reactor Checherov maintains that some of its parts simply melted and turned into plasma. When the plasma flowed out there was an explosion of such a force that it blew the reactor’s uppermost plate off 15-17 meters upwards. But it was not the only thing to fly out. In contrast to the more ‘official versions’, Checherov is convinced that most of ‘the active zone’ was blasted out of the reactor and exploded while it was in the air. According to him, about 95% of the fuel and the products of the nuclear fission came out and were spread across the entire planet.

Checherov’s version is a ‘worst case scenario’ and many environmental organisations disagree. They believe that more than 97% of the radioactive materials are still inside the reactor and that only 3% are dispersed outside.

George Lepin
Nuclear Scientist, International Ecological Academy, Minsk, Belarus

    “It was a political decision to re-start the third reactor. It was possible to do so only because there were some people, who did the hazardous work. Someone tried to prove that nothing dangerous happened in Chernobyl and that our country could manage everything. There was even a military leader who gathered his staff after the accident and inquired how much time they needed to re-build the fourth reactor. If it had been physically possible, I don’t think anyone would have spared human lives to do it.”

Delivering results and following plans without deviation, no matter what, were most important to the Soviet system. While Lepin worked as a liquidator at Chernobyl, he came across a poster showing when various parts of the power plant were built and put into operation. Everything was finished much earlier than planned. The fourth reactor was started three months earlier than expected. Three months that could have been used to check the safety of the plant.

In those days Lepin was still a patriot. He heard of soldiers – called ‘bio-robots’ – working on the roof of the reactor. In some areas people were only allowed to work for very short periods of time but even then they still received doses that were much higher than permitted. This hazardous and foolhardy work was done manually. Soldiers were given a lead apron and a shovel. During one minute they were supposed to shovel as much rubble as possible from the roof into the open reactor. Most of them got sick and were taken to the hospital.

Lepin proposed to mechanize the soldiers’ work, but few robots could function due to high radioactivity. His team managed to install some machines but they were never used. The project was stopped, because there was a rush to report the completion of the work. Those places that were still contaminated were covered with a thick layer of concrete. Nevertheless the radiation level in the building did not decrease and many people were still working there.

Lepin worked in the zone for six years and can relate many stories. He says that even before the accident people occasionally noticed that the streets of Pripyat were suddenly washed with soapy water or that new asphalt would be put on the roads. Later on the asphalt was examined and found to resemble a layer cake, consisting of ‘clean’ and contaminated layers.

“Everything points towards other accidents at Chernobyl before April 1986” concludes Lepin. “Some years ago a newspaper published a story that there was an accident in Chernobyl in 1982. It was revealed that the KGB controlled the nuclear power plant and wrote regular reports on the state of the plant. There were indications that one should have been especially careful regarding the plant. But since everything was secret, no actions were taken.”

Galina Bandazhevskaya
Paediatrician, Minsk, Belarus

    “Every scientist must be able to publicise the results of his/her work so that it can be debated. It is important that there are those who agree or disagree with the work. One should enter into a good scientific dialogue in order to reach the truth. Unfortunately this is not possible for us.”

Galina has an ambitious project in mind – to set up an independent research laboratory in Belarus. Even though it would be a modestly sized laboratory, it is a courageous initiative in a country, where everything is managed by the State. She wants to continue with the work for which her husband, Yuriy Bandazhevsky, was imprisoned.

In 1989, while most of the doctors were moving away from the contaminated area in the south of Belarus, Yuriy and Galina moved there in order to study the effects of radioactivity on the human body.

In a few years their research produced evidence that international norms for radiation exposure were deficient. Their research revealed that the prolonged influence of low dose radiation on a human body is much more dangerous than previously believed and that the heart and the kidneys were especially affected by radiation. They found that a contamination level of as little as 50 Becquerels of radioactivity per kilo of body weight could cause a child serious health problems. The research was critical of the official response to radioactivity contamination.

Shortly after the research was published, Galina’s husband Yuriy, in his capacity as Director of the Gomel Medical Institute, was arrested. He was charged and sentenced to eight years imprisonment for supposedly accepting bribes from students.

Amnesty International took up his case, classifying him as a ‘prisoner of conscience’, the EU Commission visited to check on his well being and the Council of Europe lobbied for his release. He was transferred to a cell with only three other prisoners after sharing with 80.

“Now that my husband and I have been through our system I can say that there is no justice in this country.” Galina laments. “If a person does not fit into the system and he says something different, then his freedom can be taken away with no justification. He can be accused of anything at all and will never be able to contradict it or find any kind of justice.”

On August 5 2005 Professor Yuriy Bandazhevsky was released after serving half his term. He and Galina are now working on establishing their own independent research laboratory.

Volodimir Usatenko
Energy Engineer, Kiev, Ukraine

    “We have a problem – but nobody tries to understand its essence. If you have a destroyed reactor to deal with, you need money – lots of money. ‘We can solve the problem only over 20 years’ one would say. But then it is important to revive the problem at appropriate times. If someone came along and solved the problem at once in a very simple way then only few people would be grateful to him, because he might do away with thousands of jobs.”

Before Chernobyl Usatenko was a chief engineer at a Ukrainian energy company. The Soviet energy sector was a high government priority and nuclear power was seen as the ultimate solution to the problem of energy supply.

At the beginning of May 1986, Volodimir heard that an accident had occurred at Chernobyl but that the radioactive leak was insignificant and that the reactor had not been destroyed. However, when he looked through his manuals and found out which type of reactor was involved he immediately realised that it must have been completely destroyed.

The Chernobyl reactor had a layer of protection around the fuel elements, but the protection around the reactor itself was very vulnerable and not suited to a powerful increase in pressure.

In October Volodimir was called in and ordered to go to the accident area. His team was to build a separation wall between the third and fourth units. “I was a bio-robot who did all sorts of work,” says Volodimir. “It was interesting how the body reacted to high doses of radiation. First and foremost the metabolism was stimulated enormously. When there was a lot of beta-radiation we felt it in our eyes. It felt like they were being cut. In that way we had a sense of the doses we were getting.” There were many immediate illnesses in Volodimir’s team – intestinal, stomach, heart, eye and tooth problems. It took six years before he himself felt well again.

As a member of the National Radiation Safety Commission he became involved in the discussions on what to do with the radioactive waste at Chernobyl. Volodimir thinks that all the clearing up work could be done over the course of about 12 years. In his opinion all the processes should be carefully prepared and then the work should be brought to an end. But if that was done it would also mean the introduction of new norms for the entire nuclear industry and that would be impossible to get support for.

He suspects the people responsible for clean up of stretching the process in order to keep on receiving funding from both national and international investors. “They know that if they finish the work there will be no more money. So we hear of various miracles they are performing over there. The Chernobyl problem has been turned into one fantastic business venture.”

Natalia Ivanova
Deputy Director, Vesnova Orphanage, Mogilev region, Belarus

    “It was terrible having to knock on the door or window in the middle of the night to tell the parents that their children should be evacuated the next morning. We said it was because of the radioactivity, which could have bad consequences for all of them. We arranged a place for everyone to gather to be put on buses. It was a dreadful sight.”

On April 26 1986 Natalia was working in the garden. It was not until the evening that the news reached her about the accident 27 kilometres away. Natalia was not worried because neither she nor her family knew anything about nuclear power and they did not realise there was any danger.

At midnight two or three days after the accident, all the employees of the school were gathered together. The director told them to go round warning people in the villages. The children were to be evacuated the next day at 6 a.m.

During the night they managed to assemble most of the children. They were put on buses and driven away. Nobody really understood the gravity of the situation. “People were panicking. It was just like wartime,” Natalia remembers. “We also evacuated pregnant women, but that was just the first evacuation.” The last residents were evacuated from the village six months after the accident.

Natalia got a job in an orphanage for mentally and physically handicapped children in the town of Vesnova. There were 15 nurses and teachers for 150 children, of who 87 required constant care. Approximately 30% of the children came from the contaminated areas but there was no record kept of what connection their family had to the accident.

Today there are more institutionalised children in Belarus than after World War Two. The strong increase in congenital deformities after the Chernobyl accident has meant an increase in the number of children in orphanages, partly because of the rejection of deformed children and partly because the economic situation makes it practically impossible for families to look after sick children.

Sergei Parashin
Former Director of the Chernobyl Power Station, Kiev, Ukraine

    “You can reduce the consequences if you do not give people negative information about radioactivity. It is a fact that the workers at the power station who began working there before the disaster do not get sick as often as those who came after the accident. There are consequences caused by the radioactivity but most of the consequences are psychological.”

In 1986 Parashin was second in command at the Chernobyl power plant. Since then he has had many years to analyse what happened. He is convinced that such an accident cannot happen again and that society has learnt from its mistakes. As if to convince himself, he repeats over and over that there are only a few long-term effects and that they can be overcome with a positive attitude towards the future.

“The most crucial thing for a person’s health is their psychological state, which also affects the immune system,” says Parashin. “The positive and optimistic people whom I knew in Chernobyl could tolerate high doses of radioactivity and remain in good health. People with a negative attitude died much quicker than others.”

Right after the explosion on April 26, all the managers gathered in a bunker from where the decisions were taken. It gradually became apparent that the reactor was destroyed, but the extent of the disaster did not become clear to Parashin until daylight when he was able to see the enormous crater revealing the radioactive reactor.

For those who had been there that night, the question arose how things could have gone so wrong. “There were many factors at play. The power station had many construction faults. Furthermore, we prioritised financial profit over safety,” says Parashin. “It was a problem of the whole Soviet Union. Quantity was prioritised over quality”.

In 1994 Sergey advanced to the position of director for the entire power plant complex. He set out to improve Chernobyl’s image and had the place spruced up and painted. The workers’ canteen got napkins and stainless cutlery replaced the old Soviet aluminium. The staff received nicer clothing, flowers were planted and a fountain was built. Parashin also modernised the railway line, which ran to the new town of Slavutich, where the workers then lived. Cultural events were arranged in the town. Staff moral improved and productivity rose slightly. In 1995 the Ukraine agreed to close down the remaining Chernobyl reactors and that was achieved in 2000.

It is Parashin’s view that Chernobyl affected safety at power stations in the West. “After Chernobyl many countries stopped the construction of new nuclear power stations and instead improved the safety of existing reactors. I think more money was invested than was necessary, but as a result nuclear energy has become safer. So countries in the West owe thanks to the Ukraine”.

Danilo Vezhichanin
Mayor of the village of Yelno, Rivne Oblast, the Ukraine

    “What is it you need if you live in a village? You need land, water and roads. Then it is a good life! In our village you do not complain of having no gas or the like. Here you hope at least to get some good land so that you can plant potatoes and get some ‘clean’ hay. Our children must be able to drink ‘clean’ milk. Now it is contaminated with radioactivity. Without Chernobyl our land would have been ‘clean’. It would have been easier for people to live here.”

The village of Yelno, where Danilo lives, is 300 km west of Chernobyl and was among the places hardest hit by the radioactive fallout. Danilo explains that the village is surrounded by sand and peat bogs, resulting in a high mobility of radioactive elements from the soil into the plants. Scientists believe that 97% of the radioactivity circulates between the peat soil and the plants.

The 700 people living in Yelno were not informed about the accident in 1986. A whole year passed before the information reached them. Not until people began getting headaches and pains in their joints during the winter of 1987 did they contact the health authorities. There was an attempt to evacuate the population, but most inhabitants soon returned. It is typical of people in Polesie that they are intimately connected with the rhythms of nature and the land.

Most of the villagers live off their own production of milk, potatoes and vegetables. 80-90% of the contamination reaches people through their food. Just 5-20% comes from external radiation. Milk is eight to ten times more contaminated than permitted. The same goes for meat and potatoes.

The cows graze in meadows of grass with high caesium content. The radioactivity lies in the upper layers of the soil where the roots of the grass are. The IAEA runs a project in Yelno, where fields are ploughed so that the radioactive elements in the upper 5 cm are instead spread over 20 cm. As a result the concentration of radioactivity is diluted threefold and the food is less radioactive.

In radiobiology there is a rule of thumb that it takes about 10 half-life periods before a radioactive element is safe. The half-life period of caesium is 30 years. Applying this rule of thumb suggests that it will take 300 years before the problems of Yelno have dissipated.

Marita Stinnerbom
Reindeer farmer, Klimpfjäll, Lapland, Sweden

    “Reindeer farming is our life. We have lived off it for hundreds of years. I believe we shall continue reindeer farming no matter what. But we also think about what has happened and what the future will bring. After we began feeding our reindeer with the special forage, the taste of the meat had changed. It did not have its natural taste anymore.”

Marita drives a cross-country vehicle in the mountain valley. She throws her lasso into the reindeer flock that has been driven down through the valley. “We have managed to keep our traditions because we live them. I got my first reindeer from my parents, when I was small. It is impossible to start reindeer farming at the age of 20. One has to build up the flock when still a child.”

Lapland, the country of the Samies, stretches from northern Russia, over Finland, Sweden and Norway. In Sweden, where Marita lives, there are approximately 20,000 Samies, 10-15% of whom work with reindeer. They do not own the land, but have the right to use it.

In spring 1986, a few days after the Chernobyl accident, it rained over Scandinavia and large areas got contaminated with radiation. Lichen, which comprises the main part of the reindeer’s nutrition, became radioactive and so did the animals. They were all slaughtered and buried in a dump.
“The Swedish Government paid us for the reindeer as it is responsible for the well-being of the population of its country.” The Samies were compensated for the loss and could buy new reindeer in the North. However it was not just an economic loss that they suffered. Their indigenous culture was at stake.

Samies’ life had always been centred on the reindeer. After 1986 slaughtering could only happen at a certain point in the year. The animals were scanned for radiation and given special forage to prevent them from absorbing too much caesium. Everything was to be planned according to a totally new pattern.

The problem with radiation has not disappeared. In 2003 the amounts of caesium in Lapland valleys increased suddenly and many Samies had to bury their reindeer again but on that occasion no compensation was given. The scientists believed that the reason for the sudden increase was due to the vast number of mushrooms that accumulated radioactive elements but the Samies point out that fish were also affected, even though fish do not eat mushrooms.
“We could always eat reindeer meat, but now we have to bury them sometimes and that hurts,” says Marita. “I cannot stop thinking that caesium is in our bodies and that we pass it over to our children. In 2003 we were very worried and we are still concerned about what awaits us in the autumn. It can come back any time.”

Alexander Filippov
Retired school teacher, Babichi village, Belarus

    “Today school children only get four hours of lessons in radioactivity. Who teaches these four hours? It is usually general class teachers, who are normally not specialists in the subject. They can be very specialised in mathematics, biology or a million of other things. But there is a high degree of ignorance about radioactivity among them and even amongst people who have high positions in society, which never ceases to surprise me.”

For many years after the accident nobody in the affected areas knew what they should do in their everyday lives. Courses on radioactivity safety were arranged in the schools, but there were no teaching materials. Filippov wrote five manuals on agriculture and radioactivity aimed at teachers in rural schools. The books were published in a limited edition and the government did not provide any additional materials.

He set up an ‘ecological centre’ in a small room at the school with apparatus that could measure the level of caesium in foodstuffs. He acquired some instruments to measure nitrates, pH values, potassium and phosphorus. In this way he was able to get a rather detailed idea of what foods were most dangerous to eat. PICTURE – pg 60

The pupils were involved in identifying the cleanest and the most contaminated zones around the village. Radioactivity levels of the local forest and nearby fields were charted on maps. By knowing where the invisible pollution was located, they could recommend where berries and mushrooms could be gathered more safely.

“All our recommendations were geared towards teaching children how to get ‘completely’ clean food from ‘relatively’ clean food using technology,” says Alexander of the teaching project, which was closed after he retired. No other teacher was willing to take over this important education.

In southern Belarus radioactivity has been a fixed part of everyday life for the last 20 years. Alexander thinks that if people in the ministries knew more about the subject, then their knowledge would spread downwards in this authoritarian country. “We obey the law. We do the things we are expected to do.”

In agriculture, attempts are made to prevent radioactivity getting into foodstuffs by spreading calcium, dolomite and potassium on the fields. This serves to block strontium and caesium but, on the other hand, these elements remain in the soil. Alexander’s opinion is that the soil can be completely rid of radioactive elements through the use of plants.

An experiment that lasted four years has proved that plants from the legume family almost completely clean the soil. The problem is that it is not profitable to cultivate legumes and no extern funding is available therefore the local population continues eating radioactive food.

“Nobody tells us anything and it is difficult to prove anything. People die of ordinary illnesses. If the authorities admit that a person dies because of radioactivity then they have to award compensation afterwards. Who wants to do that?”

Boris Sorochinskiy
Researcher, Institute for Cell Biology and Genetics, Kiev, the Ukraine

    “After Chernobyl I studied biochemical, physiological, and cytological changes in human beings and plants. In official reports from WHO and IAEA there were only accounts about Chernobyl causing an increase in cataracts and thyroid cancers. All other possible consequences were rejected due to the lack of statistic data or information about the health situation prior to the accident and thus the absence of a basis for comparison.”

Sorochinskiy ventures into the unknown in a somewhat messy office in the outskirts of Kiev, where he explains about his research. When scientists research something new, it can be compared to a trip to outer space. Everything is so different that before the trip, one cannot imagine what one will encounter.

“To be able to do genetic studies it is necessary to examine several generations. Right now we have only a second generation of people since the Chernobyl accident. For a long time there was a popular opinion, which was almost regarded as official, that there were no genetic consequences of the catastrophe and that one should stop regarding Chernobyl as a possible source of danger.”

When Boris came to the Chernobyl zone for the first time, it was exciting for him to study the subject of his master’s thesis directly in the field, beyond the limiting laboratory environment.
He noticed deformed and yellowish plants. “Deciduous trees had bigger leaves,” he reports. “Some oak tree leaves were ten times bigger than normal and pine tree needles – three or four times smaller. I do not have any doubts that Chernobyl caused some genetic changes. The question is how to find them.” According to Boris the scientists can only say that the problem of genetic mutations exists but are not able to point out the specific ones. It is possible to examine several generations of plants in the course of a relatively short time. Therefore they serve as a good model for researching some processes that are difficult to study among people and animals. “People want to see the results at once, but mutations take some time to manifest. It took billions of years for these processes to happen on Earth.”

Another issue for Sorochinskiy is the connection between chronic radiation and health. He believes that the effect of long-lasting low doses can sometimes compare to that of high doses. “If a person experiences a chronic dose of one roentgen, it can be equal over time to a radiation dose of 100-120 roentgens received at once. If there is funding, it is possible to study the genetic consequences and the risks associated with chronic radiation. If there is no money for that, then one can only say that there exist no problems.”

Svetlana Polganovskaya
Activist, Chechersk, Belarus

    “The administration was ‘laundering money’. They were funded to decontaminate the area and evacuate people but they had their own agenda. Instead of removing the contaminated villages the money was spent on something else. The local authorities tried to put me in jail because I invited an independent commission to examine what was going on. It revealed that four clean villages with new houses had been evacuated to Chechersk and other places nearby while the authorities transported all the houses to the Black Sea and sold them as holiday cottages.”

After the accident at Chernobyl, the inhabitants of Chechersk noted that puddles of rainwater were green in colour. They were told that it was pollen from the trees, but did not believe it. They had never seen anything like it. Svetlana went to the local administration office to get an explanation but she was told to keep her mouth shut.

That was the beginning of a war she has been waging for 20 years. She arranged a sit-in in Moscow and pointed out to international humanitarian organizations that people in the contaminated areas of Belarus were being ignored. She revealed documents proving that although the town was supposed to be evacuated, people continued living there. Her flat was burnt down and she was arrested several times.

It was only two years after the accident that it was prohibited to eat food from Chechersk district. The military officials coming from Russia to decontaminate the area were very surprised to find a lively town still functioning.

Svetlana approached the regional administration to ask why the neighbouring region of Vetkovsk had been recognized as contaminated, whereas there was no recognised problem in Chechersk. She organised a group of the locals to measure the area for radiation.

In 1990 Svetlana participated in an international Chernobyl conference in Kiev and even though Svetlana was not due to make a speech, she took the microphone and declared that only three regions in Belarus had been evacuated and that many people still lived in contaminated areas. People in the West had believed that all the population evacuation had been done.

The same year she arranged a demonstration in front of the Parliament in Minsk. For two months they protested with posters demanding the evacuation of the zone, better medical treatment and vitamins for children.

Svetlana managed to bring an IAEA delegation to the town but the visit it turned into a farce. People had been gathered in the community centre and given lots of vodka – villagers played the accordion and danced in the square. By the time the IAEA delegation arrived, everyone was partying and no one brought forward any complaints.

Today, Svetlana cooperates with an Irish humanitarian aid organization. When the lorries filled with aid arrive, Svetlana distributes the aid to the village people who need it, but the bureaucracy makes it difficult.

Valentina Smolnikova
Paediatrician, Buda-Koshelevo, Belarus

    “It is very lucrative for the authorities to hide information from the public. If nobody knows about the problem, one does not have to invest any money into solving it. We gathered lots of data on radiation level in people’s thyroid gland. The authorities said that our data was incorrect and should be destroyed. Afterwards the scientists invented new figures. This is the crime committed by our government.”

Smolnikova heard the news about the accident only in the beginning of May 1986 on the forbidden radio station “Svoboda”. As a Soviet medical worker Valentina was liable to be called up for military service in case of war. If the enemy had dropped nuclear bombs, her team would be the first in the area to deal with the situation. They were equipped with Geiger counters and various military instruments.

Only after the official announcement of the accident could the medical team travel to the local villages to examine people for radiation. Many of these villages were later demolished and buried because the radioactivity levels were too high.

The official scientists never requested the results of the examinations – instead the results were destroyed and the team’s instruments were confiscated.

While the authorities were busy concealing the scientific results Valentina was busy as a paediatrician, working with the medical complications that appeared in the years following the accident. Next to her daily duties she continued gathering as much statistical data as she was capable of.

She found out that 40% of young men had illnesses preventing them from doing military service. A further 30% were declared partly fit for the service. Since 1986 there has been a constant increase in the number of invalids among the people. In 2003 there was a total of 477,000 invalids in Belarus, which equated to 4.8% of the population.

“Children should not have contamination of the body greater than 20 becquerels per kilogram. And that is a high figure,” says Valentina. “If you accept a larger dose the numbers of sick and dying children will increase. We have a large proportion of children who are invalids. Previously we have never had children aged 14 and 15 being declared invalids.”

As opposed to many of her colleagues Valentina constantly tries to get the public interested in the real problems of the country. In August 2004 she ran for Parliament to have a chance to debate the problems that are otherwise not discussed in the country’s media.

“Chernobyl was the reason for the USSR falling apart,” says Valentina. “It was the beginning of the end for the Soviet Union. We knew nothing for five years, even though we were living on contaminated soil. Nobody said we were living in an affected area, despite the fact that the government knew it.”

Chantale Garnier
Housewife/activist, Jura, France

    “In some ways France is 20 years behind other countries. There are still many censored things here. Even in the medical system. In order to see a specialist I need to first visit the family physician. We have the right to vote but we’re not free. In 2001 my organisation went to court. We reported that we had been poisoned. We complained that our thyroid cancers were Chernobyl collateral damage”

When it became known that an accident happened in a nuclear power plant in the USSR, people in many European countries were advised to stay indoors. In southern Germany cows were not allowed to graze outside. But not in France.

“When we heard it on television, they said there was no danger. We wondered why the neighbouring countries took precautions, while we did not have to do anything.” Garnier recalls thinking at the time that those precautions elsewhere were an over-reaction. Only when she developed thyroid cancer one year later did she understand that something was wrong.

After her thyroid operation it took Garnier 5 years to regain control of her life. She wanted to find out why she got sick at all. She was told that 90% of cases of the kind of cancer she had were caused by radiation. Therefore she was convinced that the cause of her disease was the rain with radioactive particles from Chernobyl.

To find evidence of a cover-up Garnier and her colleagues from the Association of Thyroid Patients filed a complaint with the French Courts in 2001. “We do not accuse politicians, we accuse the scientists, who were aware of the consequences of the accident but who would not say anything.”

A contingent of policemen searched ministries and public offices for the documents that could identify people who knew the degree of contamination after the accident and yet failed to warn the public. The court wanted to learn about the decisions that lead to France not taking any fallout precautions in 1986.

“These documents showed that there was a falsification of weather forecasts right after the accident” says Garnier. “The system denied Chernobyl. All the information about the real levels of contamination was classified.” It was revealed that the contamination map France submitted to the EU was falsified, claims Garnier. It showed 0.5 Becquerel in those places where real contamination was 500,000.

Garnier makes the point that it is difficult to accept that a country like France, with its fine food traditions, produces its raw products in fields with a high content of radioactive caesium. It is even harder to understand that one of the largest countries in the democratic European Union functioned in ways similar to the Soviet system that made the Chernobyl catastrophe possible.

“We are still continuing with our work since we have not achieved our goal. Right now we have only been to the local courts, but we are ready to go to the final French court of appeal or to the EU if necessary. We will prove that the state lied to us.”

For information about how to bring the exhibition to your town or city or to order the book (published in Danish and English) please contact Mads Eskesen – profits from the book will be donated to the BELRAD Institute of Belarus.

Contact: Mads Eskesen
Tel: +45 28880257
Email: 20years.20lives@gmail.com
Web: www.20years20lives.info